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Abstract
Recently significant advances have been witnessed
in the area of distributed word representations
based on neural networks, which are also known as
word embeddings. Among the new word embed-
ding models, skip-gram negative sampling (SGNS)
in the word2vec toolbox has attracted much atten-
tion due to its simplicity and effectiveness. How-
ever, the principles of SGNS remain not well under-
stood, except for a recent work that explains SGNS
as an implicit matrix factorization of the pointwise
mutual information (PMI) matrix. In this paper, we
provide a new perspective for further understanding
SGNS. We point out that SGNS is essentially a rep-
resentation learning method, which learns to repre-
sent the co-occurrence vector for a word. Based on
the representation learning view, SGNS is in fact an
explicit matrix factorization (EMF) of the words’
co-occurrence matrix. Furthermore, extended su-
pervised word embedding can be established based
on our proposed representation learning view.

1 Introduction
Distributed word representations, i.e., word embeddings,
have been widely applied in various text mining and natural
language processing tasks. Different to the traditional one-
hot representation that represents a word with a large vec-
tor, distributed word representation embeds every word into
a low dimensional continuous space. Such representations
are assumed to convey semantic and syntactic information of
words.

The most widely adopted discipline to learn word embed-
ding vectors is to maximize the corpus likelihood by neu-
ral network training [Bengio et al., 2006; Mnih and Hinton,
2007; 2009; Collobert et al., 2011; Huang et al., 2012; Le and
Mikolov, 2014; Huang et al., 2013; Pennington et al., 2014;
Kiros et al., 2014]. Among all these methods, CBOW and
the skip-gram model in the well-known word2vec toolbox
[Mikolov et al., 2013a; 2013b] have attracted tremendous at-
tention from both academia and industry due to their effec-
tiveness and efficiency. Remarkably, it is shown that the em-
bedding vectors produced by these models preserve the syn-
tactic and semantic relations between words under simple lin-

ear operations. For example, relations are captured as Madrid
- Spain ≈ Paris - France, good - best ≈ great - greatest.

We focus on the skip-gram negative sampling (SGNS)
model in this paper. Despite of its significant success, the
underlying theoretical principles of the SGNS model are not
clear enough yet. The SGNS model follows the routine of
maximizing the conditional probability of the observed con-
texts given the current word when scanning through the cor-
pus, however it is not clear what information the embedding
vectors really convey.

The first attempt to answer this question is proposed in
[Omer and Yoav, 2014], where the authors show that SGNS is
an implicit matrix factorization (IMF) that factorizes an im-
plicit word-context matrix where the value of each entry in-
dicates the strength of association between the correspond-
ing word-context pair. Specifically, the implicit word-context
matrix that SGNS is factorizing is known as the pointwise
mutual information (PMI) matrix constructed from the raw
co-occurrence matrix. The authors demonstrate that in the
ideal case, i.e., the embedding size of word vectors be infinity,
SGNS perfectly reconstructs the PMI matrix.

In this paper, we provide a new perspective for the nature
of the SGNS model. To be more specific, our main contribu-
tion is that we reformulate the objective of SGNS as a rep-
resentation learning objective that has never been discovered
before. In our representation learning view, the embedding
vector learned for a word is a hidden representation for oc-
currences of the corresponding contexts under a softmax loss.
Based on the representation learning view, we further show
that SGNS is in fact an explicit matrix factorization (EMF),
where the matrix to be factorized is the co-occurrence matrix.
From this representation view, the extended task of super-
vised word embedding will have a clear definition. Compared
with the existing IMF analysis of SGNS, our EMF formula-
tion differs in the matrix to be factorized and the reconstruc-
tion loss. Furthermore, based on our formulation, the conver-
gence property of the proposed algorithm will be much easier
to analyze.

More importantly, once the equivalence of SGNS, repre-
sentation learning and EMF is established, the new perspec-
tive will provide a solid basis for further natural extensions
and generalizations of SGNS.

The remainder of the paper is organized as follows. We
first review related background including the co-occurrence
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matrix, PMI, SGNS and general matrix factorization in Sec-
tion 2, then present the perspective of representation learning
and EMF for SGNS in Section 3. The optimization algorithm
is designed in Section 4, followed with insight from our pro-
posed perspective and the extended approach of supervised
explicit matrix factorization. We conduct experimental in-
vestigation in Section 6 and demonstrate that the algorithm
based on our formulation performs as well as the SGNS in
the word2vec toolbox.

2 Background
Our explanation of word embedding focuses on skip-gram
negative sampling (SGNS) from word2vec. In the follow-
ing we give a brief review of the co-occurrence matrix, PMI,
SGNS and general matrix factorization.

2.1 Co-occurrence Matrix and Pointwise Mutual
Information

Given a training corpus D and a word w, several words are
selected as the context words forw according to certain strate-
gies, e.g., those neighboring words falling in all the fix-sized
windows centered at w. We denote the number of times that
a context word c appears in w’s contexts as #(w, c) which is
also called the co-occurrence count, and we have the follow-
ing:

#(w) =
∑
c∈VC

#(w, c), #(c) =
∑

w∈VW

#(w, c)

|D| =
∑

w∈VW ,c∈VC

#(w, c)
,

where VW and VC denote the word and context vocabularies
in a text corpus D. The co-occurrence matrix is denoted as
D, where the entry in the cth row and wth column is #(w, c).
A column of D can be regarded as an explicit representation
for corresponding w denoted as the explicit word vector dw

in the rest of the paper. Based on D, the PMI matrix M can
be constructed such that Mw,c = log(#(w,c)|D|

#(w)#(c) ).

2.2 Skip-Gram Negative Sampling
For a word w ∈ VW and a context word c ∈ VC , their em-
bedding vectors are represented as column vectors w ∈ Rd

and c ∈ Rd respectively, where d is the embedding’s dimen-
sionality. The embedding vectors of the words in VW and the
context words in VC constitute the columns of the word and
context embedding matrices W and C.

The general skip-gram model is a simplified statistical lan-
guage model that aims to predict context words given a cen-
tral word w. The conditional probability is defined in a soft-
max form:

P (c|w) =
ew

T c∑
c′∈VC

ewT c′
(1)

The context embedding matrix C and word embedding ma-
trix W can then be learned through optimizing the following:

max
W,C

∑
w∈VW

∑
c∈VC

#(w, c) log P (c|w) (2)

However, it is difficult to calculate the partition function∑
c′∈VC

ew
T c′ in the denominator of (1). Therefore, it is

proposed in [Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013] to maximize an alternative likelihood exploiting nega-
tive sampling

log σ(wT c) + kEcN∼PD (log σ(−wT cN )), (3)

where σ(x) = 1
1+e−x is the sigmoid function and PD is a

probability measure taken on all words to sample false con-
text words and k is a hyper parameter specifying the number
of such words for each w. This formulation is easy to com-
pute and is named as Skip-Gram Negative Sampling (SGNS).
SGNS is applied to all the selected word-context pairs by
skip-gram, leading to the following objective:

max
W,C

L(W,C)

=
∑

w∈VW

∑
c∈VC

#(w, c)
[

log σ(wT c)

+ kEc′∼PD
(
log σ(−wT c′)

) ]
=
∑

w∈VW

l(w,C)

(4)

To simplify analysis, following [Omer and Yoav, 2014], PD
is set to the empirical unigram distribution PD(c) = #(c)

|D| .

2.3 Matrix Factorization and Representation
Learning

We revisit matrix factorization and representation learning in
this subsection. Given a matrix X, matrix factorization aims
to factorize X into two matrices Y and Z such that X ≈ YZ.
The objective of matrix factorization can be written as:

min
Y,Z
L(X,YZ), (5)

where L(·, ·) is the loss function that measures the distance
between two matrices with the same size.

Different L(·, ·) leads to different matrix factorization
models, including non-negative matrix factorization [Lee and
Seung, 2001], probabilistic matrix factorization [Mnih and
Salakhutdinov, 2007], max-margin matrix factorization [Sre-
bro et al., 2004]. All of these models can be formulated as
special cases of (5).

We can also consider matrix factorization as Representa-
tion Learning. Under certain circumstance, the objective (5)
can be re-written as:

min
Y,Z

ΣiL(xi,Yzi). (6)

where L(·, ·) evaluates the distance between the ith column
of X and YZ, and L is called the representation loss. From
this point of view, one can regard that zi is the code and a
hidden representation of the observed instance vector xi and
Y is regarded as the representation dictionary, therefore the
objective of matrix factorization can be viewed as learning a
representation for each sample xi. Sparse coding [Lee et al.,
2006] is a well-known representative of representation learn-
ing models.
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3 SGNS as Representation Learning and
Explicit Matrix Factorization

In this section, we provide a novel view for SGNS in the per-
spective of representation learning and explicit matrix factor-
ization (EMF) that has never been discovered before. To be
concrete, we will prove that the objective of SGNS (4) is a
special case of (5) and (6), and define the specific loss func-
tion L(., .). As a consequence, we can view SGNS as a rep-
resentation learning as well as a matrix factorization model.
From the representation learning view, the instance vector to
be represented here is the explicit word vector dw and the
representation dictionary is the context embedding matrix C.
From the matrix factorization view, the matrix to be factor-
ized is the words’ co-occurrence matrix D.

3.1 Representation Loss for Explicit Word Vector
Before proceeding to our main results, we define the explicit
word vector, and the specific representation loss L(·, ·) in (6)
for our problem.
Definition 1. For a word w, its explicit word vector dw ∈
R|VC | is defined as: dw,c = #(w, c), where dw,c is the cth
element of vector dw and #(w, c) is the co-occurrence count
between word w and c in the corpus.

We also define the candidate set Sw of possible explicit
word vectors for word w: Sw = Sw,1 × Sw,2 × ...Sw,c ×
...Sw,|Vc| is the Cartesian product of |VC | subsets and each
subset is defined as Sw,c = {0, 1, · · · , Qw,c}, where Qw,c

is a pre-defined upper bound for the possible co-occurrence
count between word w and c. That is, we assume that all
the possible explicit word vectors for word w are elements
of the set Sw. The detailed value for Qw,c is specified in the
later section and we guarantee that #(w, c) ≤ Qw,c, thus
dw ∈ Sw.

Given the above definition, we introduce the concept of
Representation Loss for Explicit Word Vector.
Definition 2. Representation Loss for Explicit Word Vector
is defined as the negative log probability of observing the ex-
plicit word vector dw given w and C. To be more concrete,

LS(dw,C
Tw) = − log

ed
T
wCTw∑

d′w∈Sw
ed
′
w

TCTw

, − log P (dw|CTw)

= − log
∏
c∈VC

edw,cC
T
c w∑

d′w,c∈Sw,c
ed
′
w,cC

T
c w

= −
∑
c∈VC

logP (dw,c|CT
c w)

, (7)

where LS serves as the representation loss and Cc denotes
the cth column of C. It should be mentioned that the summa-
tion

∑
d′w,c∈Sw,c

is a summation in Hamming space that will
be defined below in the proof of Theorem 1.

The negative representation loss LS is inspired from repli-
cated softmax [Hinton and Salakhutdinov, 2009] in which
a generative model for representing documents is proposed,
and P (dw|CTw) here is the conditional distribution of the
generative model in replicated softmax.

3.2 Equivalence of SGNS and EMF

Theorem 1. For a word w, when Qw,c is set to k#(w)#(c)
|D| +

#(w, c), LS(dw,C
Tw) is equivalent to −l(w,C), where

l(w,C) is the loss term for w in (4).

We defer the detailed proof for Theorem 1 to the end of
this subsection. To summarize, Theorem 1 guarantees that
for word w, LS(dw,C

Tw) is equivalent to −l(w,C) in (4),
if the pseudo context length Qw,c is set to an appropriate
value. Therefore, the objective of SGNS (4) is equivalent to
minw,C

∑
w∈VW

LS(dw,C
Tw).

According to general representation learning in Section
2.3, the equivalence shown in Theorem 1 implies that the em-
bedding vector w learned in SGNS is a hidden representation
vector for each explicit vector dw under the representation
loss (7).

As the main corollary derived from Theorem 1, we point
out that the objective of SGNS (4) is equivalent to explicit
matrix factorization (EMF) of matrix D:

min
W,C

−
∑

w∈VW

l(w,C)

=
∑

w∈VW

LS(dw,C
Tw)

, MF(D,CTW)

=− tr(DTCTW) +
∑

w∈VW

log(
∑

d′w∈Sw

ed
′
w

TCTw),

(8)

where MF denotes the loss of matrix factorization and cor-
responds to L(X,YZ) in (5). Each column of CTW is sup-
posed to approximate the corresponding dw vector under the
representation loss (7). In addition, from the last line of (8),
we can note that MF intends to minimize an inner product
loss with a soft maximum regularization, and the objective is
convex over CTW, though it is not jointly convex over C
and W.
Proof of Theorem 1. First the partition function of
P (dw,c|w,Cc) in (7) can be factorized as follow:∑

d′w,c∈Sw,c

ed
′
w,cC

T
c w

=
∑

d′w,c,1,d
′
w,c,2...,d

′
w,c,Qw,c

∈{0,1}Qw,c

e
∑Qw,c

q=1 d′w,c,qC
T
c w

=
∑

d′w,c,1,d
′
w,c,2...,d

′
w,c,Qw,c

∈{0,1}Qw,c

Qw,c∏
q=1

ed
′
w,c,qC

T
c w

=

Qw,c∏
q=1

∑
d′w,c,q∈{0,1}

ed
′
w,c,qC

T
c w ,
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so we reformulate P (dw,c|w,Cc) as:

P (dw,c|CTw) =
edw,cC

T
c w∑

d′w,c∈Sw,c
ed
′
w,cC

T
c w

=

∏Qw,c

q=1 edw,c,qC
T
c w∏Qw,c

q=1

∑
d′w,c,q∈{0,1}

ed
′
w,c,qC

T
c w

=

dw,c∏
q=1

σ(CT
c w)

Qw,c∏
q=dw,c+1

σ(−CT
c w)

= σ(CT
c w)

dw,c
σ(−CT

c w)
Qw,c−dw,c

.

(9)

Given the factorization of P (dw,c|w,C) above, with Cc = c
and dw,c = #(w, c), LS(dw,C

Tw) can be reformulated as:

LS(dw,C
Tw)

= − log(P (dw|CTw))

=−
∑
c∈VC

[
dw,clog σ(wT c) + (Qw,c−dw,c) log σ(−wT c)

]
= −

∑
c∈VC

[
#(w, c) log σ(wT c)

+ (Qw,c −#(w, c)) log σ(−wT c)
]

(10)

By substitutingQw,c = k#(w)#(c)
|D| +#(w, c) into (10) above

and following the recipe in [Omer and Yoav, 2014], we get

LS(dw,C
Tw)

=−
∑
c∈VC

[
#(w, c)log σ(wT c)+k

#(w)#(c)

|D|
log σ(−wT c)

]
=−

∑
c∈VC

#(w, c) log σ(wT c)

−
∑

cN∈VC

k
#(w)#(cN )

|D|
log σ(−wT cN )

=−
∑
c∈VC

#(w, c)logσ(wT c)−#(w)kEcN∼PD logσ(−wT cN)

=−
∑
c∈VC

#(w, c)
[
logσ(wT c)+kEcN∼PD

(
logσ(−wT cN )

)]
=− l(w,C)

(11)

Therefore, given appropriate Qw,c, the negative represen-
tation loss LS (7) is equivalent to −l(w,C) in (4).

4 Optimization Algorithm
Given the equivalence of SGNS, representation learning and
EMF established above, we propose a new optimization al-
gorithm to train word embeddings based on the matrix factor-
ization formulation. Specifically, we leverage the alternating
minimization scheme for optimization, which is an effective

and widely adopted method in the matrix factorization liter-
ature. Before we formally describe the algorithm, we derive
the gradients of (8) that will be used in the algorithm:
∂MF(D,CTW)

∂C
=
∑

w∈Vw

−∂LS(dw,C
Tw)

∂C

=
∑

w∈Vw

−dww
T + Ed′w|CTw [d′w]wT

=
(
ED′|CTWD′ −D

)
WT

∂MF(D,CTW)

∂W
= C

(
ED′|CTWD′ −D

)
,

(12)
where Ed′w|w,C denotes the conditional expectation taken on
d′w with respect to the distribution P (dw|CTw) in (7) and
ED′|CTW denotes the concatenation of all Ed′w|CTw from
w ∈ VW . The expectation Ed′w|CTw [d′w] can be computed
in a closed form. According to (7) and (9), we have:

Ed′w,c|CT
c w

[
d′w,c

]
= Qw,cσ(CT

c w), (13)

where Ed′w,c|CT
c w

[
d′w,c

]
is the cth entry in the vector

Ed′w|CTw [d′w] and is the expectation of a binomial distribu-
tion given the probability σ(Ccw) and number of trialsQw,c.

The details of the Alternating Minimization for Explicit
Matrix Factorization (AMEMF) algorithm are summarized in
Algorithm 1. In the main loop, there are two minimization
steps (starting from line 4 and line 9 respectively), which
minimize the objective with regard to W and C alternatively.
For each minimization step, we employ the gradient descent
scheme based on the gradients in (12).

Algorithm 1: Alternating minimization for explicit ma-
trix factorization

Input: Co-occurrence matrix D, step-size of gradient
descent η, maximum number of iterations K

Output: CK , WK

1 initialize Ci and Wi randomly, i = 1;
2 while i ≤ K do
3 Wi = Wi−1;
4 //minimize over W;
5 repeat
6 Wi = Wi − η Ci−1

(
ED′|Wi,Ci−1

D′ −D
)
;

7 until Convergence;
8 Ci = Ci−1;
9 //minimize over C;

10 repeat
11 Ci = Ci − η

(
ED′|Wi,CD

′ −D
)
WT

i ;
12 until Convergence;
13 i = i+ 1;

The main difference between AMEMF and the algorithm
for SGNS in word2vec is that AMEMF is a batch alternating
minimization algorithm, while word2vec scans through the
corpus and updates w and c in a stochastic mode. Subtle dif-
ferences in implementation include whether a negative sam-
pling procedure is used (SGNS) or not (AMEMF); and the
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way to tune the learning rates: whether it is a linearly drop-
ping learning rate to guarantee the convergence of stochastic
gradient descent (SGD) in SGNS or a constant learning rate
in AMEMF.

Despite of the differences, in the experiments in Section 6,
we will demonstrate that the optimization algorithm AMEMF
derived directly from the matrix factorization formulation
(8) performs comparably with the SGD algorithm adopted
in word2vec, which further verifies the equivalence between
SGNS and EMF.

4.1 Convergence Analysis
Here we analyze the convergence property of the pro-
posed algorithm AMEMF. Firstly, note that the objec-
tive in each minimization subprocedure (line 4 and 9
in Algorithm 1) is convex, which guarantees the opti-
mal solution of each subprocedure can be reached with
sublinear convergence rate [Nesterov, 2004] when the
step-size is chosen properly. The whole minimization
procedure can be summarized as an iteration over the fol-
lowing two steps: Wi = arg minW MF(D,CT

i−1W)

and Ci = arg minC MF(D,CTWi), which im-
plies MF(D,CT

i−1Wi−1) ≥ MF(D,CT
i−1Wi) ≥

MF(D,CT
i Wi). As a consequence, it is guaranteed that the

objective (8) descents monotonically and the algorithm will
converge due to the lower bounded objective.

5 Insight from the Equivalence
We have presented the main results of this paper by establish-
ing the equivalence between SGNS and representation learn-
ing as well as matrix factorization. Meanwhile, the contribu-
tion of this work is beyond the equivalence itself in the sense
that we can now derive natural extensions of word embedding
by leveraging the equivalence. To be more concrete, we pro-
pose an extended task Supervised Word Embedding, which
is of great practical importance and can be conducted much
more naturally within the framework of representation learn-
ing and matrix factorization than the skip-gram model. This
enhances the significance of the equivalence which not only
helps understanding the skip-gram model, but also benefits
real world tasks.

5.1 Supervised Word Embedding
Before describing the Supervised Word Embedding task, we
first review the analogical reasoning task proposed in [Le
and Mikolov, 2014], which serves as the basis for our task.
The analogical reasoning task aims to find the most proper
answer d in a query a - b ≈ c - d where d is not known, such
as Madrid - Spain ≈ Paris - France and good - best ≈ great
- greatest. Given the corresponding embedding vectors wa,
wb, wc, we find the most proper word d through finding the
most similar vector for wb−wa +wc under cosine distance.
The percentage of these answers that we predict accurately in
queries is taken as the evaluation metric for this task.

In practice, the queries in the analogical reasoning task can
not only act as the benchmark for evaluating word embed-
ding, but also provide additional side information to guide

the embedding process and boost the performance. We re-
fer this task of leveraging the information from the analogical
reasoning queries to improve word embedding as Supervised
Word Embedding. Although our proposed EMF is an unsu-
pervised model as SGNS, the formulation (8) can be gener-
alized to a supervised model naturally to incorporate super-
vised information based on the representation learning view,
given the training corpus and analogical reasoning queries.
Specifically, a query in the analogical reasoning task has four
components that are denoted as “a”, “b”, “c” and the accurate
answer “d”, and the corresponding co-occurrence vectors and
embedding vectors are denoted as da, db, dc, dd and wa, wb,
wc, wd respectively. The objective of supervised explicit ma-
trix factorization (SEMF) can then be written as:

min
W,C

MF(D,CTW)+λMF(Dd,C
T (Wb−Wa+Wc)),

(14)

where matrices Dd,Wa,Wb,Wc consist of dd,wa,wb,wc

as columns respectively, and provide supervised information.
λ is a hyper-parameter controlling the degree of supervision.
In this model, wd is a representation for dd due to the first
term and wb −wa +wc also corresponds to a representation
for dd due to the second term , and thus wd is supposed to
approximate wb − wa + wc. In this way, side information
can be leveraged to guide the embedding process. we can
observe that the proposed supervised model is solely based on
our MF matrix factorization loss and is a natural extension
of EMF.

The supervised model (14) can be solved similarly with the
alternating minimization framework as in Algorithm 1.

6 Experiments
In this section, we conduct several experiments to verify the
effectiveness of the AMEMF algorithm in the EMF frame-
work. The experiments consist of two parts: comparison of
word embedding methods and evaluation of supervised word
embedding. They are both evaluated by the analogical rea-
soning task. To compare the methods, we will evaluate the
performance of SGNS, SPPMI, IMF and EMF, and verify
the equivalence of SGNS and EMF. Here SPPMI indicates
the Shifted Positive Pointwise Mutual Information (PMI) ma-
trix MSPPMI , which is a variant of PMI as MSPPMI

w,c =
max(Mw,c − log k, 0) and has better performance than the
original PMI in the analogical reasoning task according to
[Omer and Yoav, 2014]. IMF here represents the word
embedding approach based on Singular Value Decomposi-
tion (SVD) of the SPPMI matrix. In the supervised word em-
bedding task, we will compare EMF and SEMF, and justify
the superiority of SEMF by leveraging side information.

Datasets
We use a publicly accessible dataset Enwik91 as our train-
ing corpus. Enwik9 contains about 124 million tokens. We
adopt the original dataset of analogical reasoning queries
used in [Mikolov et al., 2013a] for the analogical reason-
ing task, which contains 19544 queries called Google query

1http://mattmahoney.net/dc/textdata.html

3654



k Method mini-count
3000 4000 5000 6000

1 SPPMI 66.43% 66.43% 60.86% 61.94%

2
SGNS 73.73% 75.66% 70.43% 69.78%
IMF 54.05% 57.38% 55.14% 55.22%
EMF 75.18% 76.02% 70.57% 71.08%

4
SGNS 74.02% 75.02% 71.71% 71.64%
IMF 37.55% 40.91% 34.43% 38.06%
EMF 74.82% 75.57% 68.57% 71.64%

6
SGNS 74.82% 77.38% 72.86% 72.39%
IMF 31.69% 30.41% 31.86% 31.72%
EMF 75.04% 75.57% 71.14% 71.64%

Table 1: Comparison of SGNS, PMI, IMF and EMF in the
analogical reasoning task

Method λ
Training/Test set ratio

10/90% 30/70% 50/50% 70/30%
EMF / 62.97% 62.97% 62.12% 62.21%

SEMF

0.025 64.92% 70.50% 74.69% 79.55%
0.05 67.52% 76.56% 81.66% 86.78%
0.075 69.06% 79.75% 84.70% 82.59%
0.1 70.82% 80.53% 76.12% 77.46%
0.125 71.95% 79.50% 72.04% 57.59%

Table 2: Comparison of EMF and SEMF in terms of accuracy
with different training ratios and λ values

dataset. Vocabulary size is controlled by a hyper-parameter
mini-count that filters low frequency (less than mini-count)
words out and different vocabulary sizes result in different
sizes of query dataset correspondingly. The negative sam-
pling parameter is denoted as k as in (4).

Experimental Setup
The dimensionality of all embedding vectors is set to 200.
For comparison of word embedding methods, we compare
the embedding vectors produced by SGNS, SPPMI, IMF with
SVD and EMF with the AMEMF algorithm under different
k and mini-count values. The step-size of AMEMF is set
to 6e − 7. To keep the settings of AMEMF and SGNS as
consistent as possible, they use the same co-occurrence ma-
trix produced by the skip-gram strategy with window size 5.
The step-size of SGNS is set according to the default in the
word2vec toolbox, PD is set to the unigram distribution, and
the number of iterations K in AMEMF is set to 200.

For the supervised word embedding task, we partition the
Google query dataset into a training query set and a test query
set, and then train the supervised model (SEMF) on the train-
ing query set and test its embedding vectors in the analogi-
cal reasoning task. We compare SEMF and the unsupervised
model (EMF) with differentK values and training ratios. The
mini-count value is fixed to 1000, the step-size is set to 5e−7,
and the number of iterations K in AMEMF is set to 100.

6.1 Experimental Results and Analysis
We evaluate SGNS, SPPMI, IMF and EMF in the analogi-
cal reasoning task. The comparison of these four models in
terms of the analogical reasoning accuracy is shown in Table
1 with different values of the negative sampling parameter k

and mini-count. For each cell corresponding to a combina-
tion of k and mini-count values, we highlight the best per-
formance. The SPPMI model achieves its best performance
when k is set to 1 and the its accuracy decreases rapidly when
k increases, therefore, we evaluate it independently. With
k = 1, one can observe that the accuracy of SPPMI is not
comparable to the best performance in Table 1.

In the rest 12 cells of Table 1, EMF performs best in 8 cells,
while SGNS performs best in 5 cells. Though it appears that
EMF is subtly better than SGNS, the accuracy of EMF and
SGNS are very close actually. Generally speaking, EMF and
SGNS perform quite similarly for all the different k and mini-
count parameter pairs and are significantly superior to the
other models. This experimental result empirically serves as a
strong evidence of the equivalence between EMF and SGNS.
Meanwhile, the IMF model does not perform well in the ana-
logical reasoning task which matches the experimental result
from [Omer and Yoav, 2014], and this also demonstrates that
EMF could be a more reasonable connection between SGNS
and matrix factorization than IMF.

Next the unsupervised model EMF and supervised model
SEMF are evaluated with analogical reasoning test accuracy
in Table 2. There is no natural way to incorporate supervised
information for the IMF model, which is another advantage
of EMF over IMF. Table 2 shows that SEMF significantly
outperforms EMF, verifying that incorporating supervised in-
formation improves the quality of word embeddings. Given
the similar performance of EMF and SGNS in the analogi-
cal reasoning task, the superiority of SEMF over the origi-
nal word2vec is obvious. As to the effects of different hyper
parameters, one can observe that the performance of the un-
supervised EMF remains stable with different training ratios.
In the meantime, it can be observed that the performance of
SEMF grows with the training ratio and λ impacts the de-
gree of supervision significantly. This experiment not only
verifies the generalization ability of SEMF, but also inspires
that we can equip embedding vectors with intended properties
through supervision.

7 Conclusion
We revisit the skip-gram negative sampling (SGNS) model
in the popular toolbox word2vec, and prove that intrinsically
SGNS is a representation learning method, as well as an ex-
plicit matrix factorization (EMF) of the co-occurrence matrix
that is directly obtained from corpus. Different to implicit
matrix factorization (IMF) [Omer and Yoav, 2014], our ob-
jective is explicitly equivalent to SGNS, based on which the
task of supervised word embedding can be conducted natu-
rally. Experimental results justify the equivalence between
SGNS and EMF, as well as the validity of supervised word
embedding.
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