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Abstract

Recently, solving rank minimization problems by leverag-
ing nonconvex relaxations has received significant attention.
Some theoretical analyses demonstrate that it can provide a
better approximation of original problems than convex re-
laxations. However, designing an effective algorithm to solve
nonconvex optimization problems remains a big challenge. In
this paper, we propose an Iterative Shrinkage-Thresholding
and Reweighted Algorithm (ISTRA) to solve rank minimiza-
tion problems using the nonconvex weighted nuclear norm
as a low rank regularizer. We prove theoretically that under
certain assumptions our method achieves a high-quality local
optimal solution efficiently. Experimental results on synthetic
and real data show that the proposed ISTRA algorithm out-
performs state-of-the-art methods in both accuracy and effi-
ciency.

Introduction
Rank minimization is a widely investigated problem in
machine learning and computer vision where one intends
to exploit low-dimensional structure in high-dimensional
space. For example, in matrix completion (Candès and Recht
2009), it is common to assume that a partially observed ma-
trix has low rank structure; in robust PCA (Candès et al.
2011), backgrounds of videos and faces under varying il-
lumination are regarded as falling into a low rank subspace;
in multi-task learning (Chen, Zhou, and Ye 2011), different
tasks are supposed to share certain properties, which can be
expressed as a low rank task-feature matrix; in subspace seg-
mentation (Liu, Lin, and Yu 2010), clustering is performed
on the low rank representation of the original data.

A general rank minimization problem can be formulated
as

min
X

f(X) + λ · rank(X) (1)

It has been proved that solving (1) is NP-hard due to the
noncontinuous and nonconvex nature of the rank function.
In order to tackle this NP-hard problem, general approaches
usually relax the rank function to various regularizers, which
can be categorized into convex and nonconvex relaxations.

The commonly used convex relaxation for the rank func-
tion is the nuclear norm ‖X‖∗. Recht, Fazel, and Parrilo

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2010) has proved that the nuclear norm is the convex en-
velop of the rank function over the domain ‖X‖2 ≤ 1. In
another word, the nuclear norm is a tight approximation of
the rank function under simple conditions. Candès and Recht
(2009) has shown that low rank solutions can be recovered
perfectly via nuclear norm under incoherence assumptions.
Due to the convex property of the nuclear norm, there are
many sophisticated algorithms off the shelf. These algo-
rithms can achieve a global optimal solution efficiently with
theoretical guarantees, examples include SVT (Cai, Candès,
and Shen 2010), ALM (Lin, Chen, and Ma 2010), APGL
(Toh and Yun 2010), and FISTA (Beck and Teboulle 2009).
However, the nuclear norm suffers from the major limita-
tion that all singular values are simultaneously minimized,
which implies that large singular values are penalized more
heavily than small ones. In real applications, the underlying
matrix may have no incoherence property, and the data may
be grossly corrupted. Under these circumstances, methods
based on nuclear norms usually fail to find a good solution.
Even worse, the resulting global optimal solution may devi-
ate significantly from the ground truth.

The nature of nonconvex relaxations is to overcome the
imbalanced penalization of different singular values. Essen-
tially, they will keep larger singular values large and shrink
smaller ones, since the large singular values are dominant in
determining the properties of a matrix, and should be penal-
ized less to preserve the major information. A representative
of nonconvex relaxations is the truncated nuclear norm (Hu
et al. 2013) which is defined as the sum of the smallest r sin-
gular values. By minimizing only the smallest r singular val-
ues, one can avoid penalizing large singular values. In real
applications, nonconvex relaxation methods usually perform
better than convex relaxations and could be more robust to
noise. On the other hand, the algorithms solving nonconvex
relaxations may get trapped in bad local optimal solutions
or cost too much time due to the hardness of nonconvex op-
timization. The approach of truncated nuclear norm could
achieve more accurate solutions than nuclear norm methods
empirically, however it has a two-layer loop that implies sub-
stantial computational overhead, and the number of singular
values to be penalized is hard to determine.

In this paper, inspired by Candès, Wakin, and Boyd
(2008), which uses the weighted `1 norm to enhance spar-
sity, we will introduce an intuitive and flexible weighted nu-
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clear norm
∑
wiσi defined as a weighted sum of all sin-

gular values to enhance low rank. To solve the nonconcex
weighted nuclear norm problem, we propose an Iterative
Shrinkage-Thresholding and Reweighted Algorithm (IS-
TRA), which is simpler and faster to converge to a high-
quality local optimal solution (i.e. the critical point) with
solid theoretical guarantees compared with the state-of-the-
art truncated nuclear norm algorithm.

Problem Formulation
Consider the general weighted nuclear norm framework for
rank minimization problems

min
X

f(X) + λwTσ(X) (2)

whereX ∈ Rm×n, q = min(m,n), w ∈ Rq+ is the vector of
all positive weights, σ(X) = [σ1(X) · · ·σq(X)]T , σi(X) is
the ith largest singular value ofX , and λ > 0 is a parameter.

Note that (2) is an intuitive and unified framework rather
than the true objective function1. To enhance low rank, we
need to design a scheme to keep the weights of large singular
values sufficiently small and the weights of small singular
values sufficiently large, which will lead to a nearly unbi-
ased low rank approximation. Hence, one may think of the
weights in w as free parameters instead of variables in (2).
Intuitively, one can set each weight wi to be inversely pro-
portional to the corresponding singular value σi(X), which
will penalize large singular values less and overcome the un-
fair penalization of different singular values.

Before going through the technical details, we make
the following assumptions about the loss function f(X)
throughout this paper:
• f : Rm×n → R+ is continuously differentiable with Lip-

schitz continuous gradient, i.e., for any X , Y
‖∇f(X)−∇f(Y )‖ ≤ L(f)‖X − Y ‖

where L(f) > 0 is the Lipschitz constant.
• f is coercive, i.e., f(X)→∞ when ‖X‖ → ∞.
These two assumptions are general and widely used in the
design and analysis of optimization algorithms.

Methodology
In this section, we will discuss detailed techniques to solve
the general problem in the unified framework (2).

Solving a Proximal Operator Problem
First, we fix w as wk and suppose that Xk is known. Then
we make a first-order approximation of f(X) atXk regular-
ized by a quadratic proximal term:

Ptk (X,X
k) = f(Xk) + 〈X −Xk,∇f(Xk)〉+ tk

2
‖X −Xk‖2

(3)
Since optimizing f directly is hard, we minimize its first-
order approximation (3) instead. Hence, our ISTRA algo-
rithm generates the sequence {Xk} by

Xk+1 = arg min
X

Ptk(X,Xk) + λ(wk)Tσ(X) (4)

1The true objective function can be derived as (12).

By ignoring constant terms and combining others, (4) can be
expressed equivalently as

Xk+1 = arg min
X

tk

2λ

∥∥∥X − (Xk − 1

tk
∇f(Xk)

)∥∥∥2
F

+ (wk)Tσ(X)

(5)

Thus, we first perform a gradient descent along the direction
−∇f(Xk) with step size 1

tk
and then solve (5), which is

a nonconvex proximal operator problem (Parikh and Boyd
2013). Next we will prove (5) has a closed-form solution by
exploiting the special structure of it.
Lemma 1. (Zhang and Lu 2011) Let ‖·‖ be unitarily invari-
ant norm on Rm×n (i.e., ‖UXV ‖ = ‖X‖ for any unitary
matrix U, V and any X ∈ Rm×n), and let F : Rm×n → R
be a unitarily invariant function (i.e. F (UXV ) = F (X)
for any unitary matrix U, V and any X ∈ Rm×n). Let
A ∈ Rm×n be given, q = min(m,n), and let φ be a
non-decreasing function on [0,∞). Suppose that UΣV T

is the singular value decomposition of A. Let operator

D : Rq → Rm×n be Dij(x) =

{
xi if i = j

0 otherwise
. Then,

X∗ = UD(x∗)V T is a global optimal solution of the prob-
lem

min
X

F (X) + φ(‖X −A‖) (6)

where x∗ ∈ Rq is a global optimal solution of the problem

min
x

F (D(x)) + φ(‖D(x)− Σ‖) (7)

Based on Lemma 1, the following conclusion is easily ob-
tained:
Theorem 1. Let µ > 0, A ∈ Rm×n, w ∈ Rq+ be
given, and let q = min(m,n), X ∈ Rm×n, σ(X) =
[σ1(X) · · ·σq(X)]T , σ(A) = [σ1(A) · · ·σq(A)]T . Suppose
that UΣV T is the singular value decomposition of A. Then,
X∗ = UD(x∗)V T is a global optimal solution of the prob-
lem

min
X

µ

2
‖X −A‖2F + wTσ(X) (8)

where x∗ ∈ Rq can be denoted as

x∗ = max
(
σ(A)− 1

µ
w, 0

)
(9)

Proof. Let F (X) = wTσ(X), which is a unitarily invari-
ant function. Let φ(θ) = µ

2 θ
2, which is non-decreasing on

[0,∞). It is known that Frobenius norm ‖ · ‖F is a unitarily
invariant norm (Horn and Johnson 2012). Thus, we can find
(8) coincides with (6). Substituting (7) with what we just de-
fined, it is easy to obtain that x∗ is a global optimal solution
of the problem

min
x

µ

2
‖x− σ(A)‖22 + wT |x| (10)

where |x| = [|x1| · · · |xq|]T . Using the soft-thresholding op-
erator (Parikh and Boyd 2013) to solve (10), we can con-
clude that (9) is indeed the analytical solution of (10). Thus,
according to Lemma 1, we can complete the proof of the
theorem.
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Let µ = tk

λ , A = Xk − 1
tk
∇f(Xk) = UΣV T , w = wk.

According to Theorem 1, we can easily get that the closed-
form solution of the nonconvex proximal operator problem
(5) is X∗ = UD(x∗)V T , where x∗ = max

(
σ
(
Xk −

1
tk
∇f(Xk)

)
− λ

tk
wk, 0

)
.

Reweighting Strategy
We fix X as Xk and update w. Intuitively, we could de-
sign a scheme to make each weight wi inversely propor-
tional to σi(X), which will penalize large singular values
slightly. According to Candès, Wakin, and Boyd (2008), the
weights can be updated by letting wki = 1

|xk
i |+ε

when min-
imizing the weighted `1 norm for sparsity. Here, we ex-
tend this from sparse optimization to low rank optimization.
Thus, our reweighting strategy can be written as

wki =
r

(σi(Xk) + ε)
1−r (11)

where i = 1 · · · q, 0 < r < 1, and ε > 0 is a smoothing
parameter.

Next, we will explain the reason why w is reweighted by
(11). Consider the problem

min
X

{
g(X) = f(X) + λ

q∑
i=1

(σi(X) + ε)
r
}

(12)

where 0 < r < 1. Let

h(v) =

q∑
i=1

(vi + ε)r (13)

where v ∈ Rq+. Since 0 < r < 1, we know that h(v) is
concave on Rq+. Similar to (3), we make a first-order ap-
proximation of h(v) at vk:

S(v, vk) = h(vk) + 〈v − vk,∇h(vk)〉 (14)

Let v = σ(X), vk = σ(Xk), we optimize (12) by replacing
the second term h(σ(X)) with its first-order approximation
(14), i.e., min f(X) +λS(σ(X), σ(Xk)), which is equiva-
lent to

min
X

f(X) + λ
[ r

(σi(Xk) + ε)
1−r

]q
i=1

σ(X) (15)

According to (11), (15) can be reformulated as

min
X

f(X) + λ(wk)Tσ(X) (16)

We can see (16) is indeed a weighted nuclear norm problem,
which falls into the unified framework (2). And the penalty

h(v) = h(σ(X)) =

q∑
i=1

(σi(X) + ε)
r → rank(X)

when ε → 0, r → 0. Thus, optimizing the nonconvex
weighted nuclear norm problem (2) with reweighting strat-
egy (11) is actually to solve the nonconvex problem (12),

which is our true objective function and will augment the
recovery of low rank matrices.

More importantly, the proposed methodology can be gen-
eralized by replacing (11) with many other reweighting
strategies. One just needs to choose alternative concave and
differentiable penalty functions instead of h(v) in (13). In
turn, new objective functions will be obtained in (12). All
these variants fall into the unified framework (2) and can be
solved by the proposed ISTRA algorithm, which makes (2) a
flexible framework. For example, Candès, Wakin, and Boyd
(2008) defines h(v) as a log-sum function.

Algorithm 1 Iterative Shrinkage-Thresholding and
Reweighted Algorithm (ISTRA)

Input: 0 < tmin < tmax, 0 < τ < 1, 0 < r < 1, λ > 0,
δ > 0, ε > 0, ρ > 1
Output: X∗

1: Initialize: k = −1, w0 = 1T , X−1, X0

2: repeat
3: k = k + 1
4: update tk by (17)
5: make tk ∈ [tmin, tmax]
6: while true do
7: update Xk+1 by (5)
8: if line search criterion (18) is satisfied then
9: Break;

10: end if
11: tk = ρtk

12: end while
13: update the weights wk+1

i by (11) i = 1 · · · q
14: until stop criterion ‖Xk+1 −Xk‖2 ≤ δ is satisfied

ISTRA Algorithm
Now, we present the detailed procedure of the ISTRA al-
gorithm which is summarized in Algorithm 1. Inspired by
Gong et al. (2013), we adopt the well known Barzilai-
Borwein (BB) rule (Barzilai and Borwein 1988) to initialize
the step size 1

tk
in (5), which will bring us a good initial step

size that can reduce the line search cost. Let

∆Xk = Xk −Xk−1, ∆fk = ∇f(Xk)−∇f(Xk−1)

According to the BB-rule, tk is initialized as

tk = arg min
t
‖t∆Xk −∆fk‖2 =

〈∆Xk,∆fk〉
〈∆Xk,∆Xk〉

(17)

In each iteration, we use the line search criterion (18) to se-
lect the step size adaptively, which will accelerate our algo-
rithm compared with constant step size:

f(Xk+1) + λ(wk)Tσ(Xk+1) ≤ f(Xk) + λ(wk)Tσ(Xk)

− τ

2
tk‖Xk+1 −Xk‖2

(18)

where τ is a constant in (0, 1). If (18) is not satisfied, we will
increase tk (decrease the step size 1

tk
) by tk = ρtk (ρ > 1).

We adopt ‖Xk+1 − Xk‖2 ≤ δ as the stop criterion of the
algorithm, with convergence guarantees as shown in (24).
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Convergence Analysis
In this section, we will give a detailed convergence analysis
of the proposed ISTRA algorithm, following the insights of
Beck and Teboulle (2009) and Gong et al. (2013).

Boundness of the Step Size
Theorem 2. In each iteration of the ISTRA algorithm, the
line search criterion (18) is always satisfied if tk ≥ L(f)

1−τ .

Proof. Since f(X) is continuously differentiable with Lips-
chitz continuous gradient, according to Nesterov (2004), for
any Xk+1, Xk and t ≥ L(f)

f(Xk+1) ≤ f(Xk) + 〈Xk+1 −Xk,∇f(Xk)〉

+
t

2
‖Xk+1 −Xk‖2

(19)

Since Xk+1 is a global minimizer of (4), we can obtain
Ptk(Xk+1, Xk) + λ(wk)Tσ(Xk+1) ≤ Ptk(Xk, Xk) +
λ(wk)Tσ(Xk), which is equivalent to

〈Xk+1 −Xk,∇f(Xk)〉+ λ(wk)Tσ(Xk+1)

≤ − t
k

2
‖Xk+1 −Xk‖2 + λ(wk)Tσ(Xk)

(20)

Summing up (19), (20) at both sides of the inequalities and
combining terms, we get

f(Xk+1) + λ(wk)Tσ(Xk+1) ≤ f(Xk) + λ(wk)Tσ(Xk)

− tk − t
2
‖Xk+1 −Xk‖2

Thus, if t
k−t
2 ≥ τtk

2 , i.e., tk ≥ t
1−τ ≥

L(f)
1−τ , the line search

criterion (18) will be always satisfied.

In the procedure of line search, tk is monotonically in-
creasing due to ρ > 1. Hence, it is always true that tk ≥
tmin. However tk will not increase infinitely, because Theo-
rem 2 guarantees that when tk grows to exceed L(f)

1−τ , the line

search criterion (18) will be satisfied. That is, tk ≤ ρL(f)
1−τ .

Thus, tk is bounded with tmin ≤ tk ≤ ρL(f)
1−τ .

Remark 1. If L(f)
1−τ ≤ tk ≤ ρL(f)

1−τ is always held, the IS-
TRA algorithm will fall into a general family of Majorization
Minimization (MM) methods (Hunter and Li 2005).

Convergence Results
Definition 1. X∗ is called a critical point of problem (12),
if 0 belongs to the subgradient of g(X) at X∗, i.e.,

0 ∈ ∂g(X∗) = ∇f(X∗) + λ

q∑
i=1

w∗i ∂(σi(X
∗))

where ∂(·) is the subgradient (Nesterov 2004), and

w∗i =
r

(σi(X∗) + ε)
1−r (21)

Now, we present the main convergence result.

Theorem 3. The sequence {Xk} generated by the ISTRA
algorithm makes the objective function g(X) in problem
(12) monotonically decrease, and all accumulation points
(i.e., the limit points of convergent subsequence in {Xk})
are critical points.

Proof. Since h(v) defined in (13) is concave on Rq+, it fol-
lows from (14) that for any v ∈ Rq+, h(v) ≤ S(v, vk).
Let v = σ(Xk+1), vk = σ(Xk), we have h(σ(Xk+1)) ≤
S(σ(Xk+1), σ(Xk)), which is equivalent to
h(σ(Xk))− h(σ(Xk+1)) ≥ (wk)Tσ(Xk)− (wk)Tσ(Xk+1)

(22)
Since the sequences Xk, wk, tk generated by the ISTRA al-
gorithm in each iteration are certain to satisfy the line search
criterion (18), combined with (22), we have

g(Xk)− g(Xk+1)

= f(Xk)− f(Xk+1) + λ
[
h(σ(Xk))− h(σ(Xk+1))

]
≥ f(Xk)− f(Xk+1) + λ(wk)Tσ(Xk)− λ(wk)Tσ(Xk+1)

≥ τ

2
tk‖Xk+1 −Xk‖2

(23)
which implies that the objective function g(X) is monotoni-
cally decreasing. Since g(X) is bounded from below, the se-
quence {g(Xk)} will converge, i.e., limk→∞ g(Xk) = p∗.
Since both f(X) and g(X) are coercive, the sequence {Xk}
is bounded. According to the Bolzano-Weierstrass theorem,
there exists at least one convergent subsequence of {Xk}.
Without loss of generality, assume that X∗ is an arbitrary
accumulation point of {Xk}. That is, there exists a subse-
quence {Xkj} such that limj→∞Xkj = X∗. Taking limits
on both sides of (23) with k →∞, we obtain

lim
k→∞

(g(Xk)− g(Xk+1)) ≥ lim
k→∞

τ

2
tk‖Xk+1 −Xk‖2

Since tk is bounded, together with limk→∞ g(Xk) = p∗,
we get

lim
k→∞

‖Xk+1 −Xk‖2 = 0 (24)

Hence, we have limk→∞(Xk+1 −Xk) = 0. Substituting k
with kj , we get limj→∞(Xkj+1 − Xkj ) = 0, which im-
plies that limj→∞Xkj+1 = limj→∞Xkj = X∗. Since
σi(X) is continuous, combined with (11) and (21), we have
limj→∞ w

kj
i = r

(σi(X∗)+ε)
1−r = w∗i . Considering the fact

that Xkj+1 is a global optimal solution of (4), Xkj+1 is also
a critical point of (4), we have

0 ∈ ∇f(Xkj ) + tkj (Xkj+1 −Xkj ) + λ

q∑
i=1

w
kj

i ∂(σi(X
kj+1))

(25)
Taking limits on both sides of (25) with j → ∞, by con-
sidering the boundness of tkj , the continuity of ∇f(X) and
σi(X), and the semi-continuity of subgradient ∂(·) (Rock-
afellar 1970), we obtain

0 ∈ ∇f(X∗) + λ

q∑
i=1

w∗i ∂(σi(X
∗))

Therefore, any accumulation point X∗ is a critical point of
the objective function g(X) in problem (12).
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Convergence Rate
According to (24), we use ‖Xk+1 − Xk‖2 ≤ δ as a stop
criterion in the ISTRA algorithm. Thus, ‖Xk+1−Xk‖2 can
be a quantity to measure the rate of the subsequence of {Xk}
converging to a critical point.

Theorem 4. Suppose that {Xk} is the sequence generated
by the ISTRA algorithm, and X∗ is an accumulation point
of {Xk}, then

min
0≤k≤n

‖Xk+1 −Xk‖2 ≤ 2(g(X0)− g(X∗))
/
nτtmin

which indicates that the ISTRA algorithm can converge with
sublinear rate O( 1

n ).

Proof. Since tk ≥ tmin, considering (23), we obtain
τ

2
tmin‖Xk+1 −Xk‖2 ≤ g(Xk)− g(Xk+1)

Summing this inequality over k = 0 · · ·n, we have

τ

2
tmin

n∑
k=0

‖Xk+1 −Xk‖2 ≤ g(X0)− g(Xn+1)

≤ g(X0)− g(X∗)

which implies that

min
0≤k≤n

‖Xk+1 −Xk‖2 ≤ 2(g(X0)− g(X∗))
/
nτtmin

Since (2) and (12) are both nonconvex problems, it is un-
realistic to solve them globally. However from the analysis
above, we prove the proposed ISTRA algorithm can effi-
ciently find a critical point that is a high-quality local op-
timal solution with sublinear convergence rate O( 1

n ), which
will enhance the recovery of low rank solutions.

Experiments
In this section, we conduct experiments on the matrix com-
pletion task with both synthetic and real data. We compare
the ISTRA algorithm with five commonly used matrix com-
pletion methods, among which SVT (Cai, Candès, and Shen
2010), ALM (Lin, Chen, and Ma 2010), APGL (Toh and Yun
2010) are based on the nuclear norm, OptSpace (Keshavan,
Montanari, and Oh 2010) adopts matrix factorization, and
TNNR (Hu et al. 2013) is the state-of-the-art nonconvex al-
gorithm using the truncated nuclear norm.

Synthetic Data
We generate syntheticm×nmatrix byM+aZ, whereM is
the ground truth matrix of rank b, Z is Gaussian white noise,
and a controls the noise level. M is generated by M = AB,
where A ∈ Rm×b and B ∈ Rb×n both have i.i.d. Gaus-
sian entries. The set of observed entries Ω is uniformly sam-
pled. We adopt the widely used measure called relative error
(RE = ‖X∗ −M‖F /‖M‖F ) to evaluate the accuracy of
the recovered matrix X∗.
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Figure 1: Relative error versus rank with different observations

First, we fix the matrix size and noise level to be 400 ×
300, a = 0.5 respectively, and change the rank with differ-
ent observed ratios. The results are shown in Figure 1. Next,
we fix the matrix size and rank to be 400 × 300, b = 30
respectively, and change the noise level with different ob-
served ratios. The results are shown in Figure 2. As can be
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Figure 2: Relative error versus noise with different observations

Figure 3: Images used in experiments (number 1-8)

observed from Figure 1-2, the proposed ISTRA algorithm
is more robust to noise and more reliable as the underly-
ing rank increases. Particularly, our algorithm has notable
advantages when less entries are observed, and therefore is
able to survive more corrupted data, which will significantly
enhance the low rank recovery in real applications.

Real Image Data
Here we consider the task of image inpainting which can
also be treated as a matrix completion problem. Regarding a
noisy image as three separate incomplete matrices (3 chan-
nels), we aim to recover missing pixels by exploiting the low
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Table 1: PSNR values of recovered images with text mask and iteration numbers of SVD computation
Image OptSpace SVT ALM APGL TNNR ISTRA #SVD (TNNR) #SVD (ISTRA)

1 20.23 18.62 21.32 22.70 26.63 26.68 520 451
2 19.79 18.97 20.40 22.94 30.66 30.56 572 547
3 19.81 19.21 21.37 22.13 24.74 24.81 795 352
4 32.64 24.37 27.75 36.57 36.75 37.87 346 421
5 18.21 18.13 23.83 18.58 24.87 24.82 625 611
6 23.91 22.24 25.44 27.83 30.72 31.02 1072 930
7 21.95 17.95 22.24 25.83 28.93 28.88 611 565
8 16.27 12.35 19.48 18.06 20.76 20.82 538 423
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Figure 4: PSNR values of recovered images with different observed ratios for random mask (top row: images 1-4, bottom row: images 5-8)

rank structure. The quality of recovered image is evaluated
by the well known PSNR (Peak Signal-to-Noise Ratio) mea-
sure. Higher PSNR values indicate better performance.

We test all methods using 8 images in Figure 3. First,
we solve the matrix completion tasks with random mask,
where the missing pixels are randomly sampled. The re-
sults are shown in Figure 4 and 5. Then we conduct ex-
periments on text mask, which is more complicated since
the missing pixels covered by text are not randomly dis-
tributed and the text may cover some dominant image infor-
mation. The results are shown in Figure 6 and Table 1. We
can see that the proposed ISTRA algorithm achieves higher
or comparable PSNR values but requires less SVD itera-
tions than the sate-of-the-art truncated nuclear norm method
TNNR, which demonstrates the accuracy and efficiency of
our method.

Conclusion
In this paper, we propose the ISTRA algorithm to solve rank
minimization problems using the nonconvex weighted nu-
clear norm. We prove theoretically that the ISTRA algorithm
can efficiently find a critical point that is a high-quality local
optimal solution with sublinear convergence rate. The ex-
periments further verify the accuracy and efficiency of our
method.
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(a) Original image (b) Random mask (c) OptSpace 19.01 (d) SVT 19.34

(e) ALM 20.55 (f) APGL 19.42 (g) TNNR 25.55 (h) ISTRA 26.27

Figure 5: Recovered images and PSNR values by different meth-
ods (50% pixels are randomly masked)

(a) Original image (b) Text mask (c) OptSpace 23.91 (d) SVT 22.24

(e) ALM 25.44 (f) APGL 27.83 (g) TNNR 30.72 (h) ISTRA 31.02

Figure 6: Recovered images and PSNR values by different meth-
ods (with text on the image)
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